
Co-funded by the Horizon 2020 Framework

Programme of the European Union under grant

agreement no 645119

Cyber Security through Virtualization

Alvise Rigo
a.rigo@virtualopensystems.com

Virtual Open Systems

TAPPS Workshop Ispra 2017-05-10

Virtualization

Cyber security through virtualization 01/06/2017

• Creation of a “virtual” copy of a resource
– Virtualizing several resources (CPU, memory, etc.),

an entire system can be executed in a isolated
execution environment

– For instance, a virtualized Raspberry Pi system (as
guest) can run inside an HiKey board (the host)

– But also multiple OSs as guests on top of an host
OS

Virtualization

Cyber security through virtualization 01/06/2017

• Types of virtualization
– Full virtualization
– Para-virtualization

• Types of hypervisor
– Type I (Xen)
– Type II (KVM)

• Virtualization is different from emulation
– Usually, devices are emulated, CPU are virtualized
– A virtualized CPU is much more performant than an

emulated one

• KVM is the in-kernel virtualization solution for
Linux

Benefits of Virtualization

Cyber security through virtualization 01/06/2017

• Main benefit: Security
– Spatial isolation between guest OS(s) and host OS

– The execution of the guest will not affect the
execution of the host OS

– The hardware MMU and IOMMU allow to enforce
the isolation

Guest

CPU

Memory

MMU

Attached

device

IOMMU

Benefits of Virtualization

Cyber security through virtualization 01/06/2017

• Several functions can be run inside virtual
machines (VMs)

– A web server and a MySQL server can be run in
their dedicated VM

– Malicious attacks to both these services shall not
compromise the host OS

• In the context of CPS, virtualization brings
interesting advantages like the consolidation
of different functionalities on a common
hardware platform

Automotive example:

Connected-cars

Cyber security through virtualization 01/06/2017

Cloud serversV2X

Connected devices
Critical applications

Vehicle Platform Gateway (VGP)

The main challenge connected cars is the integration of information (e.g.,
IVI, V2X, connected devices, etc.) with critical data flows:

VGP must support interconnection with external applications while ensuring
in-vehicle buses secure access to ECUs, which contains critical applications

Connected-cars: From Gateway

to Backbone Arch

Cyber security through virtualization 01/06/2017

ECU

ECUECU ECU

ECU

Gateway

ECU

ECU

Today

vECU

vECUECU ECU

vECU

GW/switch

ECU

vECU

Switch

CAN (1 Mb/s)

FlexRay (10 Mb/s) Ethernet / AVB (100Mb/s)

MOST (24 Mb/s)

(Source: Automotive Gateways – Bridge & Gateway from FlexRay/CAN/LIN to AVB Networks - BOSCH)

• New Connected cars' functionalities add an amount of streaming data
and control signals, which cannot be handled by the current
infrastructure.

• The future car will become an Ethernet networking based platform.

Tomorrow

Performance Challenges in

Virtualization

Cyber security through virtualization 01/06/2017

• Very few devices are optimized for virtualization

– Only few network cards (SR-IOV specification)

• Device emulation

– Always forces a guest-to-host switch

– The emulation of the device adds overhead

– Emulation vulnerabilities (VENOM, CVE-2015-3456)

• Two alternative solutions to emulation

– Direct Device Attachment/Pass-through

– API remoting

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456

Device Pass-through (VFIO)

Cyber security through virtualization 01/06/2017

• Assign a device to a VM

• The VM can use an
unmodified kernel driver

• Almost native
performance

• Only one device
per VM

API remoting

Cyber security through virtualization 01/06/2017

• The frontend is run
inside the VM

• The OS that has
direct access to the
device runs the backend

• Performance
overhead

• Many users (VMs)
supported

Mixed-criticality in CPS

Cyber security through virtualization 01/06/2017

• Virtualization provides isolation and permits
to achieve consolidation

• However, this is not enough for mixed-
criticality CPSs

– Non-commercial hypervisors hardly can ensure a
proper execution of an RTOS

ARM TrustZone

Cyber security through virtualization 01/06/2017

• Separation of the CPU in two different execution
states: Secure and Non-secure

• Possibility to add a Secure compartment to the
“normal”, Non-secure one

• Context switch between the two modes is done
by the monitor, in the most privileged way
– Similar to what happens with Virtualization

where the “monitor” is Linux KVM

ARMv8 CPU

Secure

mode

Non-secure

mode

Monitor

mode

Mixed-criticality in CPS
TrustZone monitor as key solution

Cyber security through virtualization 01/06/2017

TrustZone monitor

Linux/AGL RTOS

app
app

app

task
task

task

TrustZone monitor

Linux
RTOS

VM task
task

task

Hypervisor

VM
VM

• RTOS running in baremetal without
virtualization overhead

• VMs can not affect the RTOS

Multiple GPOS

Single RTOS

Single GPOS

Single RTOS

VOSYSmonitor
High-performance Implementation of ARMv8 monitor layer

Cyber security through virtualization 01/06/2017

VOSYSmonitor is a Virtual Open Systems proprietary
firmware (C/ASM), running in the Secure Monitor mode
(EL3) of ARMv8 processors (64-bits), which enables co-
execution of virtualized IVI systems with a safety critical real
time OS on the same platform and/or core.

– Certifiable firmware running in secure EL3 mode
– Safety critical RTOS isolation using TrustZone
– Provide virtualization features for IVI systems
– Saves/restores PSCI state
– Controls ARMv8 hardware exception mechanisms such as

interrupts (FIQ, IRQ), Normal (IRQ) as well as Aborts.
– Modular and scalable architecture

VOSYSmonitor features

Cyber security through virtualization 01/06/2017

The VOSYSmonitor design has been focused to meet the
following requirements:

• Enable concurrent execution on the same hardware of
an RTOS (critical applications) and a GPOS (KVM
virtualization)

• Support complete RTOS resources (Memory, Peripherals,
etc.) isolation from GPOS illegal access

• Complete RTOS boot in less than 60ms (VOSYSmonitor
boot impact target is 1%)

• Minimize the interrupt latency impact – RTOS/GPOS
Context switching time must be lower than 1us

Use case automotive example

Cyber security through virtualization 01/06/2017

Connected systems Safety Critical system

ARMv8 hardware

Virtual Machines

TEE Client
vAPI

TEE Internal APIShared
memory

VOSYSmonitor

Safety critical
legacy OS

VOSYSbootloader

RT
App

vTPM

CAN
bus

LIN
bus

Cluster

Radar

API
remoting

SOT
A

VOSYSwitch TEE Client API

vECUs

WiFI LTE

Bluetooth

Touch
display

IVI

Linux/KVM Hypervisor
API

remotingGPU

Camera V2X

Sensors

OBD

VOSYS
autmost

Safety OS dispatcher

The TAPPS approach

Cyber security through virtualization 01/06/2017

• Introduction of a monitor layer to the Virtualization
concept
– Definition of Execution Environments: Normal world (TEE and

REE) and Secure world (CEE)

Trusted Execution

Environment

Trusted

App

Critical

Execution

Environment

Critical

App

CEE Shared

Memory

Cross-World

Comm.

Interface

Host Linux

KVM

Virtual Machine

Non-Secure OS (Linux)

Cross-World

Comm.

Interface

VOSYSmonitor

FreeRTOS

TAPPS’ challenges

Cyber security through virtualization 01/06/2017

• New challenges similar to Virtualization

– Examples: zero-copy shared memory for inter-
world communication and data passing

– Resource partitioning/sharing

Shared memory: guest vs host

Cyber security through virtualization 01/06/2017

• Shared memory between host and guest

• Implemented through a QEMU device with
corresponding Linux kernel driver

• Big chunk of memory exposed as MMIO
register

• With some QEMU magic, this can be done
without copies

Shared memory: guest vs

Secure world

Cyber security through virtualization 01/06/2017

• Shared memory enables both worlds to access a
common region of memory

• The implementation of a shared memory
mechanism introduces some challenges that can
be summed up with the following list:
– Visibility of a given segment of memory to both

worlds
– Reachability of the shared memory (32bit vs 64bit)
– Fixed location of the shared memory: the memory

should not be moved nor swapped by any of the OSes
– Coherency between cores with respect to the data

written to the shared memory (MMU/Cache)

Shared memory: guest vs

Secure world

Cyber security through virtualization 01/06/2017

• In the context of TAPPS, a kernel driver has
been implemented to setup the shared
memory between Secure and Non-secure
worlds

• QEMU allocates the shared memory and
publish it to the Secure side using the kernel
driver

• Finally, it exposes it to the guest, through the
dedicated device

GPU sharing

Cyber security through virtualization 01/06/2017

In addition, the virtualization infrastructure developed
during the TAPPS project allows for extensions in the
direction of the GPU virtualization

• GPU virtualization unlocks interesting use cases for
CPSs. For instance, in the automotive domain:
• Display of emergency icons
• Multiple displays, each handled by a VM (IVI

system, dashboard, etc.)
• API remoting is a solution to share the GPU with

VMs and the Real-time OS

GPU sharing

Cyber security through virtualization 01/06/2017

• A stub OpenGLES
library is installed in
both Linux host and
Android guest

• It forwards the GL ES
API calls to the
backend running in the
RTOS

• The backend links to
the native OpenGL ES
library and executes
the calls in the RTOS

• The shared memory is
leveraged as a
transport medium
between the front and
backend

Virtual Open Systems products and

services for mixed-critical CPS

Cyber security through virtualization 01/06/2017

TAPPS Exploitation directions from Virtual Open Systems developments:

• VOSYSmonitor: commercial ASIL C ARMv8 TrustZone monitor layer
• VOSYSmonitor integration services within consolidated IVI and cluster

ECUs with RTOS and virtualized GPOS (AGL, etc.)
• Commercial software components and services related to GPU sharing,

shared memory

Further TAPPS Dissemination enabler directions from Virtual Open Systems
developments:

• Leading the effort of Linux Foundation AGL Virtualization work-group
(EG-VIRT) - https://wiki.automotivelinux.org/eg-virt

https://wiki.automotivelinux.org/eg-virt

The End

Co-funded by the Horizon 2020

Framework Programme of the European

Union under grant agreement no 645119

Partners of TAPPS

Third parties

Contact

Alvise Rigo // Virtual Open Systems

a.rigo@virtualopensystems.com

