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Virtualization
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• Creation of a “virtual” copy of a resource
– Virtualizing several resources (CPU, memory, etc.), 

an entire system can be executed in a isolated 
execution environment

– For instance, a virtualized Raspberry Pi system (as 
guest) can run inside an HiKey board (the host)

– But also multiple OSs as guests on top of an host 
OS



Virtualization
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• Types of virtualization
– Full virtualization
– Para-virtualization

• Types of hypervisor
– Type  I (Xen)
– Type II (KVM)

• Virtualization is different from emulation
– Usually, devices are emulated, CPU are virtualized
– A virtualized CPU is much more performant than an 

emulated one

• KVM is the in-kernel virtualization solution for 
Linux



Benefits of Virtualization
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• Main benefit: Security
– Spatial isolation between guest OS(s) and host OS

– The execution of the guest will not affect the 
execution of the host OS

– The hardware MMU and IOMMU allow to enforce 
the isolation
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Benefits of Virtualization
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• Several functions can be run inside virtual 
machines (VMs)

– A web server and a MySQL server can be run in 
their dedicated VM

– Malicious attacks to both these services shall not 
compromise the host OS

• In the context of CPS, virtualization brings 
interesting advantages like the consolidation 
of different functionalities on a common 
hardware platform



Automotive example: 

Connected-cars
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Cloud serversV2X

Connected devices
Critical applications

Vehicle Platform Gateway (VGP)

The main challenge connected cars is the integration of information (e.g., 
IVI, V2X, connected devices, etc.) with critical data flows:

VGP must support interconnection with external applications while ensuring 
in-vehicle buses secure access to ECUs, which contains critical applications



Connected-cars: From Gateway 

to Backbone Arch
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(Source: Automotive Gateways – Bridge & Gateway from FlexRay/CAN/LIN to AVB Networks - BOSCH)

• New Connected cars' functionalities add an amount of streaming data 
and control signals, which cannot be handled by the current  
infrastructure.

• The future car will become an Ethernet networking based platform.

Tomorrow



Performance Challenges in 

Virtualization
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• Very few devices are optimized for virtualization

– Only few network cards (SR-IOV specification)

• Device emulation

– Always forces a guest-to-host switch

– The emulation of the device adds overhead

– Emulation vulnerabilities (VENOM, CVE-2015-3456)

• Two alternative solutions to emulation

– Direct Device Attachment/Pass-through

– API remoting

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456


Device Pass-through (VFIO)
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• Assign a device to a VM

• The VM can use an
unmodified kernel driver

• Almost native
performance

• Only one device
per VM



API remoting
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• The frontend is run
inside the VM

• The OS that has
direct access to the
device runs the backend

• Performance
overhead

• Many users (VMs)
supported



Mixed-criticality in CPS
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• Virtualization provides isolation and permits 
to achieve consolidation

• However, this is not enough for mixed-
criticality CPSs

– Non-commercial hypervisors hardly can ensure a 
proper execution of an RTOS



ARM TrustZone
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• Separation of the CPU in two different execution 
states: Secure and Non-secure

• Possibility to add a Secure compartment to the 
“normal”, Non-secure one

• Context switch between the two modes is done 
by the monitor, in the most privileged way
– Similar to what happens with Virtualization 

where the “monitor” is Linux KVM

ARMv8 CPU

Secure

mode

Non-secure

mode

Monitor

mode



Mixed-criticality in CPS
TrustZone monitor as key solution

Cyber security through virtualization 01/06/2017

TrustZone monitor

Linux/AGL RTOS

app
app

app

task
task

task

TrustZone monitor

Linux
RTOS

VM task
task

task

Hypervisor

VM
VM

• RTOS running in baremetal without 
virtualization overhead

• VMs can not affect the RTOS

Multiple GPOS

Single RTOS

Single GPOS

Single RTOS



VOSYSmonitor
High-performance Implementation of ARMv8 monitor layer
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VOSYSmonitor is a Virtual Open Systems proprietary 
firmware (C/ASM), running in the Secure Monitor mode 
(EL3) of ARMv8 processors (64-bits), which enables co-
execution of virtualized IVI systems with a safety critical real 
time OS on the same platform and/or core.

– Certifiable firmware running in secure EL3 mode
– Safety critical RTOS isolation using TrustZone
– Provide virtualization features for IVI systems
– Saves/restores PSCI state
– Controls ARMv8 hardware exception mechanisms such as    

interrupts (FIQ, IRQ), Normal (IRQ) as well as Aborts.
– Modular and scalable architecture



VOSYSmonitor features
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The VOSYSmonitor design has been focused to meet the 
following requirements:

• Enable concurrent execution on the same hardware of 
an RTOS (critical applications) and a GPOS (KVM 
virtualization)

• Support complete RTOS resources (Memory, Peripherals, 
etc.) isolation from GPOS illegal access

• Complete RTOS boot in less than 60ms (VOSYSmonitor
boot impact target is 1%)

• Minimize the interrupt latency impact – RTOS/GPOS 
Context switching time must be lower than 1us



Use case automotive example
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The TAPPS approach
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• Introduction of a monitor layer to the Virtualization 
concept
– Definition of Execution Environments: Normal world (TEE and 

REE) and Secure world (CEE)
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TAPPS’ challenges
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• New challenges similar to Virtualization

– Examples: zero-copy shared memory for inter-
world communication and data passing

– Resource partitioning/sharing



Shared memory: guest vs host
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• Shared memory between host and guest

• Implemented through a QEMU device with 
corresponding Linux kernel driver

• Big chunk of memory exposed as MMIO 
register

• With some QEMU magic, this can be done 
without copies



Shared memory: guest vs 

Secure world
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• Shared memory enables both worlds to access a 
common region of memory

• The implementation of a shared memory 
mechanism introduces some challenges that can 
be summed up with the following list:
– Visibility of a given segment of memory to both 

worlds
– Reachability of the shared memory (32bit vs 64bit)
– Fixed location of the shared memory: the memory 

should not be moved nor swapped by any of the OSes
– Coherency between cores with respect to the data 

written to the shared memory (MMU/Cache)



Shared memory: guest vs 

Secure world
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• In the context of TAPPS, a kernel driver has 
been implemented to setup the shared 
memory between Secure and Non-secure 
worlds

• QEMU allocates the shared memory and 
publish it to the Secure side using the kernel 
driver

• Finally, it exposes it to the guest, through the 
dedicated device



GPU sharing
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In addition, the virtualization infrastructure developed 
during the TAPPS project allows for extensions in the 
direction of the GPU virtualization

• GPU virtualization unlocks interesting use cases for 
CPSs. For instance, in the automotive domain: 
• Display of emergency icons
• Multiple displays, each handled by a VM (IVI 

system, dashboard, etc.)
• API remoting is a solution to share the GPU with 

VMs and the Real-time OS



GPU sharing
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• A stub OpenGLES
library is installed in 
both Linux host and 
Android guest

• It forwards the GL ES 
API calls to the 
backend running in the 
RTOS

• The backend links to 
the native OpenGL ES 
library and executes 
the calls in the RTOS

• The shared memory  is 
leveraged as a 
transport medium 
between the front and 
backend



Virtual Open Systems products and 

services for mixed-critical CPS
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TAPPS Exploitation directions from Virtual Open Systems developments:

• VOSYSmonitor: commercial ASIL C ARMv8 TrustZone monitor layer
• VOSYSmonitor integration services within consolidated IVI and cluster 

ECUs with RTOS and virtualized GPOS (AGL, etc.)
• Commercial software components and services related to GPU sharing, 

shared memory

Further TAPPS Dissemination enabler directions from Virtual Open Systems 
developments:

• Leading the effort of Linux Foundation AGL Virtualization work-group 
(EG-VIRT) - https://wiki.automotivelinux.org/eg-virt

https://wiki.automotivelinux.org/eg-virt


The End
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